

Sandbox Explanation

(With added evaluations for the Civil/Geo Engineers' Sandboxes)

Particular Concepts™

LLC

"Bringing Ancient Technologies To Life" ™

http://particularconcepts.org http://particularconcepts.com

All Patent Rights Retained: US 6739827 / *7341399 / **7507056 / 7748929, and various foreign Particular Wall™ Sandbox Explanation Draft / © 2011 Particular Concepts 1 of 6

REALLY BIG (almost forever) **Pile**

With the Particular Wall™ Slanted at 11° for dfa = 30°

All Patent Rights Retained: US 6739827 / *7341399 / **7507056 / 7748929, and various foreign Particular Wall™ Sandbox Explanation Draft / © 2011 Particular Concepts 2 of 6

Particular Wall Short Explanation

#1 -- A stable "Particular Pile" -- made up of flowable, loose particulate -- at rest at its natural angle of repose.

#2 -- The same pile, with an added layer of particulate. The new layer has the same angle of repose.

#3 -- Same pile, with a "step". The particulate is seen through the "step" supports -- _____ -- at its angle of repose.

#4 -- New layer is stable at its angle of repose. The "step" is the patented Particular Valve™*.

Note: The Right Upper Edge of the Particular Valve[™] * precisely sets the point where the angle of repose of the first layer starts (●)

#5 -- The Particular Valve^{™*} is one unit of the patented Particular Wall^{™**}. The Particular

Wall^{™**} retains and controls all layers.

NOTE: The top Particular Valves^{TM *} -- when left open -- will "catch" and control any future additions (such as landslides).

#6 -- The Particular Wall^{™**} retains the particulate

(R), and the soil behind it.

Density of (R) = or > Density of SOIL

NOTE: Force is even along the wall height, minimizing rotation. Center of gravity (cg) is right of center, due to the weight of particulate.

#7 -- The Particular Valve™ Resultant Force Vector

(dotted arrow) must fall within the base.

Note: "Baffling" -- 11° for particulate with 30° angle of repose ("dfa") -- assures an infinitely high stable wall (with gravity).

"Infinite" Baffle Angle Tangent = ((1-SIN(RADIANS(dfa)))/ (1+SIN(RADIANS(dfa))))

(1/(TAN(RADIANS(dfa))))

Engineer (almost forever pile) Evaluations

Particular Wall™ Explanation / Evaluation

- -- The Particular Wall™ is built from Particular Valves™*.
- -- Each valve is an independent and force-relieving unit (refer to Tsagareli as prior -- but not complete -- art).
- -- The customary triangular effect of force applies to each unit only -- NOT THE ENTIRE WALL.
- -- Forces on a valve at the top of a Particular Wall^{™**} are identical to those on one at the bottom.
- -- This is because the noncohesive particulate is "stopped" at its angle of repose AT EACH LEVEL.
- -- If the Particular Valve Units are baffled parallel with the Resultant Vector Angle,

the Particular Wall^{™**} can be built to any height (with gravity) -- for an "infinite" retaining wall.

Spreadsheet Force Values and Calculations

- -- Only Rankine is used for evaluation of the Particular Valve^{™*}.
- -- Coulomb does not apply since there is no vertical surface of friction.
- -- The necessary structure surrounding the valve is not evaluated.
- -- The vertical surfaces of the necessary structure would be evaluated conventionally.
- -- The necessary structure would shift cg, increase Ka, and increase TOTAL VERTICAL FORCE.
- -- Surcharge is not evaluated

		variables		
	Y	= 120.00	pcf	Particulate Weight
	dfa	= 30.00	degrees	Particulate Angle of Repose or "dfa"
	н	= 1.50	feet	Height of particulate in Particular Valve™ *
	W	= 3.00	feet	Width of particulate in Particular Valve™ *
	H/2	= 0.75	feet	
	H/3	= 0.5	feet	
H/TAN(RADIANS(dfa)) =	D	= 2.60	feet	Depth of particulate in Particular Valve™ *
(1-SIN(RADIANS(dfa)))/(1+	SIN(RAD	IANS(dfa))) =		
	Ka	= 0.33		Rankine Coefficient
Ka (\mathbf{Y}) (H) (W) =	ра	= 60.00	psf	Rankine Active pressure / foot
1/2 Ka ($f Y$) (H^2) (W)=	Ра	= 135.00	#	Total Earth Pressure Force (acting at H/3 from base of valve)
Pa =	Rh	= 135.00	#	TOTAL HORIZONTAL FORCE
((H x W x D) / 2) x \mathbf{Y} =	Rv	= 701.48	#	TOTAL VERTICAL FORCE (particulate weight in Valve™*)
Rh / Rv		= 0.19245	radians	Resultant Vector Angle Tangent
(DEG(ATAN(0.19245))		<u>=</u> 10.89	degrees	Resultant Vector Angle
SQRT(D2 + Pa^2)		= 135.02	#	Resultant Vector Force
Rounding UP		<u> </u>	degrees	Baffle for "Infinite" Particular Wall™**
D / SQRT (2) =	cg	= 1.84	feet	From front of particulate in Particular Valve™ *

Simplified Baffle for "Infinite" Particular Wall™ inserted in Excel® (result is 10.69° ²/_− 11°) DEGREES(ATAN((1-SIN(RADIANS("dfa"))))/(1+SIN(RADIANS("dfa")))))/(1/(TAN(RADIANS("dfa")))))

Particular Wall[™] vs. Traditional Evaluation

